Single Particle Analysis

Being a vital cryo-EM structure determination technique, single particle analysis (SPA) helps researchers determine the hard-to-crystallize proteins in near-native states by freezing biomacromolecule samples in vitreous ice. Recently, SPA is rapidly growing its importance in structural studies of medically relevant targets.


High-resolution 3D structures of macromolecules

Cryo-EM has become a standard technique for the structural determination of macromolecules, especially for samples not applicable for X-ray crystallography and NMR due to size, crystallization difficulty, stability, complexity, and conformational variability.

High-resolution 3D structures of proteins, protein complexes and even RNA provide deeper understanding of biological processes, mechanisms of action of molecules, and structure-activity relationships, which guides drug discovery to the right path.

3D structure determination and characterization of small molecules with interacting proteins using cryo-EM assists in omtimizing chemical synthesis, understanding the structure-activity relationship and guiding the design of formulation and drug delivery approaches.

Cryo-EM is an effective technique to map the interactions between antibodies and antigens and has many applications in antibody development and biologics discovery.

Structural data can be used for paratopes/epitopes identification, structure-activity relationship determination, cross-specificity identification, monoclonal antibody optimization and IP protection.

High-resolution structures showing the interaction between antibodies and antigens can also guide vaccine development as an alternative to traditional approaches.

By providing comprehensive and high-resolution structural information, cryo-EM supports the development and manufacturing programs of the design of new drug delivery systems by characterizing the shape, size, size distribution and morphology of samples such as nanoparticles, liposomes, Adeno Associated-Virus (AAV), and other viral-like particles.

Structural characterization by cryo-EM has been acknowledged as an accurate quality control approach in many manufacturing scenarios.

Proteolysis targeting chimera (PROTAC) has drawn great attention due to its potential to target "undruggable" proteins by linking two small-molecule binding ligands.

Structural information of the binding mechanism of small molecules and targeted protein or E3 ligase can significantly improve the understanding of PROTAC technique.

Via cryo-EM, visualization of such binding interaction is possible, providing insight into molecular design and search of new binding sites on the targeted protein.



Why do you need
cryo-EM SPA?

  • Maintain the sample in its near-native state

  • Require only a small amount of samples

  • Capture flexible conformations

  • Determine heterogenous protein complex structures


Structures Solved by Shuimu

Our platform has delivered high-quality cryo-EM and microED structures to over 200 clients since 2017.

Cryo-EM Facility

The highest specs microscopes & advanced computing platform for high-quality structure determination

Cutting Edge Scientist Team

A team of PhD scientists from the top institutions, expertised in structural biology, protein science and computation

Profound Experience

200+ cryo-EM projects experience, from membrane proteins to antigen-antibody complexes

Resolution Pursuit

150+ protein structures determined at resolution better than 3.5Å: the best at 1.8Å and the smallest being 51kDA

Shuimu Cryo-EM SPA Advantages

Shuimu Technology

We've developed unique tookits to excel in cryo-EM structure determination.


To overcome the bottleneck in cryo-EM sample preparation, we developed a new type of reduced graphene oxide grid to achieve better reproducibility and efficiency of specimen preparation.


We are developing a new differentiable neural network-based method to directly identify the 3D atomic model from a cryo-EM density map in a few hours without any human interference.